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Abstract. We prove a recent conjecture on the duality relation for correlation functions of
the Potts model for boundary spins of a planar lattice. Specifically, we deduce the explicit
expression for the duality of then-site correlation functions, and establish sum rule identities
in the form of the M̈obius inversion of a partially ordered set. The strategy of the proof is by
first formulating the problem for the more general chiral Potts model. The extension of our
consideration to the many-component Potts models is also given.

1. Introduction

The duality relation for theq-state Potts model [1, 2] is an identity [3] relating the partition
functions of a Potts model on a planar lattice with that of its dual. Very recently, this duality
consideration has been extended to the Potts correlation functions [4, 5]. Specifically, it was
established that certain duality relations exist for correlation functions ofn Potts spins on the
boundary of a planar lattice. Explicit expressions for the duality relation have been obtained
for n = 2, 3 [4] andn = 4 [5]; the expression for generaln has also been conjectured [5]. It
has also been shown that there exist certain correlation sum-rule identities, but the explicit
form of the identities was not given [5]. The purpose of this paper is the following. We
first extend the consideration to the chiral Potts model [6] and obtain its duality relation
in a very general form. We then show that this formulation permits us to establish the
conjecture of [5]. In addition, it also leads to an expression of the sum-rule identities in
the form of the M̈obius inversion of a partially ordered set. Furthermore, starting from a
multicomponent chiral Potts model [7], we extend considerations to the multicomponent
Potts model, which includes the Ashkin–Teller model [9] and its generalization [10]. This
extends results reported elsewhere [11] for the 2-component Potts model.

2. The chiral Potts model

Consider aq-state spin system on a two-dimensional lattice or, more generally, any planar
graphL. Let xi = 1, 2, . . . , q denote the spin state of theith site and−J (xi, xj ) the
interaction energy between sitesi andj , which can be edge dependent. The interaction is
chiral if

J (x, x ′) 6= J (x ′, x). (1)

The partition function of this spin system is

Z(u) =
q∑

xi=1

∏
〈ij〉
U(xi, xj ) (2)
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whereU(x, x ′) = exp[J (x, x ′)/kT ] and the product is taken over all edges ofL.
For our purposes we consider the chiral Potts model [6] for which the Boltzmann factor

is cyclic, namely, it satisfies

U(x, x ′) = u(x − x ′) (mod q). (3)

We shall refer to theq × q matrix U as the interaction matrix. The chiral Potts model
reduces to the standard Potts model upon takingJ (x, x ′)/kT = Kδ(x, x ′), whereδ is the
Kronecker delta function which we define as

δ(x, x ′) = 1 x = x ′ (mod q)

= 0 x 6= x ′ (mod q). (4)

This leads to

u(x) = 1+ (eK − 1)δ(x, 0). (5)

Duality relation for the partition function. The partition function of the chiral Potts model
possesses a duality relation [3]. LetLD be the dual ofL, and letZ(D)(u∗) be the partition
function of the chiral Potts model onLD with the Boltzmann factor†

u∗(y) = 1√
q

q∑
x=1

ωxyu(x) y = 1, 2, . . . , q (6)

whereω = e2π i/q . Then, the duality relation reads [3]

q−N/2Z[u(x)] = q−N∗/2Z(D)[u∗(y)] (7)

whereN andN∗ are, respectively, the numbers of sites ofL andLD. They are related
to the number of edgesE by the Euler relationN + N∗ = E + 2. This duality relation
holds for arbitrary edge-dependent interactions. Note that

√
qu∗(y), y = 1, . . . , q, are the

eigenvalues of the matrixU. In the case of the standard Potts model, (6) reduces to

u∗(y) = 1√
q

[eK − 1+ qδ(y, 0)]. (8)

3. Duality relation for the correlation function

Numbern sites on the boundary ofL by integers 1, 2, . . . n clockwise as shown in figure 1.
The probability that then sites are in respective spin statesx1, x2, . . . , xn is

Pn(x1, x2, . . . , xn) = Zx1x2...xn/Z(u) (9)

whereZx1x2...xn is thepartial partition function of the chiral Potts model with then spins in
fixed given states. Construct an auxiliary latticeLaux from L by connecting alln boundary
sites to an extra sitee in the infinite face ofL as shown. Thesen connecting lines then
divide the infinite face ofL into n parts, which we also number by 1, 2, . . . , n as shown in
figure 1. Letuje, j = 1, 2, . . . n, be the Boltzmann factor of the line connecting sitesj to
e. Its dual edge then connects sites (residing in faces ofLaux) j andj + 1 onLDaux with the
Boltzmann factor

u∗j+1,j (yj+1− yj ) = 1√
q

q∑
x=1

ω(yj+1−yj )xuje(x) j = 1, . . . , n (10)

† The definition of the dual Boltzmann factor adopted here differs from that used in [3] by a factor
√
q. The

present definition is consistent with the notion of(u∗)∗ = u.
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Figure 1. A planar graphL andn sitesi, j, . . . , m, ` on the boundary.

whereyj denotes the spin state of the dual sitej . Here we have adopted the convention of
[3] in orienting the edges. It is also convenient to consider then-spin correlation [4]

0n = qnPn(x, x, . . . , x)− 1 (11)

a quantity which vanishes identically if then spins are completely uncorrelated.
We apply the duality relation (7) toLaux. Let Z∗y1y2...yn

be the partial partition function
of the Potts model onLDaux with sites 1, 2, . . . , n in respective statesy1, y2, . . . , yn. Then,
explicitly, (7) reads

q−(N+1)/2
∑

x1x2...xn

∑
xe

u1e(x1e)u2e(x2e) . . . une(xne)Zx1x2...xn

= q−(N∗+n−1)/2
∑

y1y2...yn

u∗21(y21)u
∗
32(y32) . . . u

∗
1n(y1n)Z

∗
y1y2...yn

(12)

wherex1e = x1− xe, y21 = y2− y1 etc, and we have used the fact thatLaux hasN +1 sites
andLDaux hasN∗ + n− 1 sites†.

Due to the cyclic nature of the matrix elements, we can replace the argumentsx1e, x2e, . . .

on the left-hand side (LHS) of (12) byx1, x2, . . . . The summation overxe can then be
carried out leading to an overall factorq. Next we eliminateu∗ by using (10). Since
all u factors in (12) are independent, as a consequence we can equate the coefficients of
u1e(x1)u2e(x2) . . . une(xn) in (12). This leads to the duality identity

Zx1x2...xn = Cn(q)
∑

y1y2...yn

M(x1, x2, . . . , xn|y1, y2, . . . , yn)Z
∗
y1y2...yn

(13)

where

Cn(q) = q−n+(N−N∗)/2 (14)

and

M(x1, x2, . . . , xn|y1, y2, . . . , yn) = ωxn1y1+x12y2+···+x(n−1)nyn (15)

can be interpreted as the elements of aqn × qn matrix M. Equation (13) is the duality
relation for the chiral Potts model, and is a very general expression. The relation assumes
a reduced form for the standard Potts model after taking into account the degeneracy of
states, and the crux of the matter is, of course, to deduce the reduced relation. This is the
subject matter of the next section.

Introducing the notation

py1y2...yn ≡ Z∗y1y2...yn
/Z∗11...1 = qZ∗y1y2...yn

/Z(D) (16)

† Note that the partial partition functionZ∗y1y2...yn
in (12) differs from that in [4, 5] by a factor.
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Figure 2. Reciprocal graphsL (solid lines) andL∗ (broken lines).

and combining with (7) and (9), we can rewrite (13) as

Pn(x1, x2, . . . , xn) = q−(n+1)
∑

y1y2...yn

M(x1, x2, . . . , xn−1, xn|y1, y2, . . . , yn)py1y2...yn . (17)

An immediate consequence of (17) is

0n = 1

q

∑
y1y2...yn

py1y2...yn − 1 (18)

a result which has been reported previously [5, 12].
To obtain the inverse of (13), we note that, by deleting the{1, 2}, {2, 3}, . . . edges in

LDaux, we arrive at a latticeL∗ in which 1, 2, . . . of L∗ are its boundary sites. An example
of L and the resultingL∗ is shown in figure 2. It is clear that the roles ofL and L∗
are reciprocal, so we can apply (13) toL∗ to obtain an inverse transform. NowL∗ has
N̄ = N∗ + n− 1 sites and its dual has̄N∗ = N − n+ 1 sites. As a result, we obtain

Z∗y1y2...yn
= c̄n(q)

∑
x1x2...xn

M(y1, y2, . . . , yn|xn, x1, x2, . . . , xn−1)Zx1x2...xn (19)

where

c̄n(q) = q−n+(N̄−N̄∗)/2 = q−1+(N∗−N)/2. (20)

We havecn(q)c̄n(q) = q−(n+1) and note that the sequence{xn, x1, x2, . . . , xn−1} of the
indices on the right-hand side (RHS) is related to{x1, x2, . . . , xn−1, xn} by a simple cyclic
permutation. Upon combining (19) with (13) we obtain the identity

M2(x1, x2, . . . , xn|x ′1, x ′2, . . . , x ′n) = qn+1δ(x1, x
′
2)δ(x2, x

′
3) . . . δ(xn, x

′
1) (21)

which we refer to as a reciprocal inversion relation.
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4. The standard Potts model

For the standard Potts model the duality relation (13) assumes a reduced form which has
been given previously forn = 2, 3 [4] and forn = 4 [5]. The form for generaln has also
been conjectured [5]. It has also been shown that the correlation functions satisfy certain
sum-rule identities [5]. Here, we reformulate the standard Potts model as an instance of the
chiral Potts model and, as we shall see, this leads us to establish the conjecture as well as
deduce the general expression for the sum-rule identities. For this reason, it is instructive
to first demonstrate how (13) reduces to the known results forn = 2, 3.

The standard Potts model is characterized by the fact that one needs only to keep track
of spin states that are the same. That is to say, one needs to keep track of the partition
of the n sites intoblocks, such that sites in one block are in the same state. This leads to
writing the partial partition functions in an expansion of a partially ordered set. Along these
lines, we write forn = 2, 3,

Zx1x2 = D12+D11δ(x1, x2)

Z∗y1y2
= D∗12+D∗11δ(y1, y2)

Zx1x2x3 = D123+D113δ(x1, x2)+D121δ(x1, x3)+D122δ(x2, x3)+D111δ(x1, x2, x3)

Z∗y1y2y3
= D∗123+D∗113δ(y1, y2)+D∗121δ(y1, y3)+D∗122δ(y2, y3)+D∗111δ(y1, y2, y3)

(22)

whereδ(x1, x2, x3) = δ(x1, x2)δ(x2, x3). Here, forn = 3, for example, the partition of the
3-set of integers{1, 2, 3} includes the five elements{{1}, {2}, {3}}, {{12}, {3}}, {{1}, {23}},
{{13}, {2}}, {{123}} denoted by subscripts{123}, {113}, {122}, {121}, {111}, respectively.

For n = 2, we substitute the first two lines of (22) into (13). Making use of the identity
q∑
y=1

ωxy = qδ(x, 0) (23)

one arrives at

D12+D11δ(x1, x2) = C2(q)
∑
y1y2

ωx21y1+x12y2[D∗12+D∗11δ(y1, y2)]

= C2(q)[q
2D∗12δ(x1, x2)+ qD∗11]. (24)

Since this equation holds for arbitraryx1 and x2, the coefficients of corresponding delta
functions must be equal, and this leads to the identities

D12 = C2(q)qD
∗
11 D11 = C2(q)q

2D∗12 (25)

which can further be converted to relateZx1x2 to Z∗y1,y2
as follows. First, the second line of

(22) gives

Z∗12 = D∗12 Z∗11 = D∗12+D∗11 (26)

from which one obtains the inverse

D∗12 = Z∗12 D∗11 = Z∗11− Z∗12. (27)

Substituting (27) into (25) and combining (9), (7) and the definition (16), one is led to the
duality relation for the 2-point correlation function

P2(x1, x2) = [D12+D11δ(x1, x2)]/Z

= 1

q2
[1+ (qδ(x1, x2)− 1)p12]. (28)
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This is the duality relation (17) forn = 2. Finally, using (22), (25), and (27), and introducing
the row vectorz̃2 = (Z11, Z12), z̃∗2 = (Z∗11, Z

∗
12), we find

z2 = qC2(q)T2(q) · z∗2 (29)

where

T2(q) =
(

1 q − 1
1 −1

)
(30)

satisfying [T2(q)]2 = qI2, with I2 being the 2× 2 identity matrix.
Similarly for n = 3 one obtains in place of (24)

D123+D113δ(x1, x2)+D121δ(x1, x3)+D122δ(x2, x3)+D111δ(x1, x2, x3)

= C3(q)
∑
y1y2y3

ωx31y1+x12y2+x23y3[D∗123+D∗113δ(y1, y2)+D∗121δ(y1, y3)

+D∗122δ(y2, y3)+D∗111δ(y1, y2, y3)] (31)

leading to the identities

D123= C3(q)qD
∗
111 D111= C3(q)q

3D∗123

D113= C3q
2D∗121 D121= C3(q)q

2D∗122 D122= C3(q)q
2D∗113.

(32)

Again, we can rewrite (32) in a form relatingZx1x2x3 to Z∗y1y2y3
. Now the inverse of the last

line of (22) is

D∗123= Z∗123

D∗113= Z∗113− Z∗123 D∗121= Z∗121− Z∗123 D∗122= Z∗122− Z∗123

D∗111= Z∗111− (Z∗113+ Z∗121+ Z∗122)+ 2Z∗123.

(33)

Substituting (33) into (32) and using the third line of (22) forZx1x2x3, we obtain

P3(x1, x2, x3) = 1

q3
[1− (p122+ p121+ p113)+ 2p123+ q(p121− p123)δ(x1, x2)

+q(p122− p123)δ(x1, x3)+ q(p113− p123)δ(x2, x3)+ q2p123δ(x1, x2, x3)].

(34)

This is the duality relation (17) forn = 3 reported in [4]†.
Explicitly, introducing the row vector̃z3 = (Z111, Z113, Z121, Z122, Z123) and similarly

definedz̃∗3, we find

z3 = qC3(q)T3(q) · z∗3 (35)

where

T3(q) =


1 q − 1 q − 1 q − 1 (q − 1)(q − 2)
1 −1 q − 1 −1 −(q − 2)
1 −1 −1 q − 1 −(q − 2)
1 q − 1 −1 −1 −(q − 2)
1 −1 −1 −1 2

 (36)

satisfying

[T3(q)]
2 = q2


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 . (37)

† Note, however, the numbering of{y1, y2, y3} as {s′, s′′, s} in [4], resulting in a more symmetric appearance of
(34).
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5. The general analysis

For generaln, we writeZx1...xn as a sum in the form of (22), namely,

Zx1...xn =
∑
X

DXδ(X) (38)

where the summation is over all partitionsX of n integers {1, 2, . . . , n}, and δ(X)
is a product of delta functions associated with blocks inX. For example, we have
δ(X) = δ(x1, x2)δ(x3, x4) for X = {1133}, and δ(X) = δ(x1, x2, x3) = δ(x1, x2)δ(x2, x3)

for X = {1114}. If a block of X containsm > 3 x’s as in δ(x1, x2, x3) above, we write
δ(X) as a product ofm−1, 2-point delta functionsδ(xj , xk) with thex’s arranged in, say, a
clockwise sequence, so the writing ofδ(X) as a product of 2-point delta functions is unique.
The number of terms in (38) isbn, and it has been shown in [5] thatbn is generated by

∞∑
n=0

bnt
n/n! = exp(et − 1). (39)

Without loss of generality we shall assumeq > n so that allZX are physically realized†.
The partition sums (22) and (38) can be regarded as a transformation between theZ’s

andD’s. The transformation is that of a partially ordered set and it is known [13] that
the inverse is given by the M̈obius inversion. LetX,X′, Y, etc denote specific partitions
of an n-set. We writeX′ � X if the block structure ofX′ is contained inX, namely,X′

is a refinement ofX [13]. For example,{1134} and {1234} are contained in{1133}, while
{1224} is not. Then, an immediate consequence of (38) is [13]

ZX =
∑
X′�X

DX′ . (40)

In addition, the M̈obius inversion of (38) is

DX =
∑
X′�X

µ(X′, X)ZX′ (41)

with

µ(X′, X) = (−1)|X
′|−|X| ∏

blocks∈X
(nb − 1)! (42)

where|X| and|X′| are, respectively, the number of blocks inX andX′, andnb the number
of blocks ofX′ that are contained in a block ofX. In the examples above, for instance,
X = {1133} has two blocks, and we havenb = {1, 2} for X′ = {1134}, andnb = {2, 2} for
X′ = {1234}, etc. This leads to

D1133= (−1)2−2(0!)2Z1133+ (−1)3−2(0!)(1!)Z1134

+ (−1)3−2(1!)(0!)Z1233+ (−1)4−2(1!)2Z1234

= Z1133− Z1134− Z1233+ Z1234. (43)

Other examples are

D1114= Z1114− Z1134− Z1214− Z1224+ 2Z1234

D1212= Z1212− Z1214− Z1232+ Z1234.
(44)

† Otherwise the situationq < |X| 6 n can occur, where|X| is the number of blocks of the partitionX, andZX
has no physical meaning, butZX , which can be computed forq > |X|, is a polynomial inq. We shall takeZX
to be the same polynomial for allq including q < |X|. With this understanding in mind all our results, including
the identities derived below, hold for allq, n.
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Figure 3. Graphical representationGn of the matrix element (65).

Figure 4. Examples of connectivities onG4. (a) X = {1133}. (b) X = {1114}. (c) X = {1212}.

Substitute the partition sum (38) and a similar expression forZ∗y1...yn
into (13), we obtain∑

X

DXδ(X) = Cn(q)
∑
Y

∑
y1...yn

M(x1, . . . xn|y1, . . . yn)D
∗
Y δ(Y ). (45)

It turns out that the analysis is best done graphically. Represent the matrix element
M(x1, . . . , xn|y1, . . . , yn) in (13) by a graphGn shown in figure 3, where each node (open
circle) denotes ay-summation, and each arc is assigned a labelx such that an outgoing
arrow (from a node labelledy) carries a factorω−xy and an incoming arrow a factorωxy . To
eachX we construct a ‘connectivity’0X according to the following prescription. Connect
the midpoints of the arcs belonging to each block ofX to a common point exterior toGn.
A connectivity is planar if the connecting lines do not intersect; otherwise the connectivity
is non-planar. Examples of connectivities forG4 are shown in figure 4. We note that
the construction of the connectivities is the same as that introduced in [5]. We have two
possibilities.

(i) 0X is planar. In this case0X divides the region exterior toGn into faces. Regarding
all nodes in one face as belonging to a block of another partitionY , and denote this mapping
by X → Y . It is clear that0Y is also planar and thatY → X. Therefore the mapping
X↔ Y is one to one. One has also†

|X| + |Y | = n+ 1. (46)

† For X = {{x1}, {x2}, . . . , {xn}}, |X| = n, we haveY = {{y1, y2, . . . , yn}}, |Y | = 1. It is also clear that|Y |
increases by 1 when|X| decreases by 1. This establishes (46).
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Figure 5. The contraction of the theY = {123216} graph ofG6 into a cactus tree.

It has been shown [14, 15] that the numbercn of planar0X, or simply planarX, is generated
by

∞∑
n=0

cnt
n =

(
1−√1− 4t

)
/2t. (47)

With this understanding, we now carry out they-summations on the RHS of (45).
From (23) eachy-summation yields a factorqδ(x, x ′), wherex and x ′ are the labellings
of the incoming and outgoing arrows. One can then regard the labellingsx as a flow
which is conserved at each node. Further, the effect of the delta functionδ(Y ) in (45) is to
collapse they-summations of each block ofY into a single summation, resulting in a factor
qδ(xin, xout) wherexin is the sum of the incoming flows andxout the sum of outgoing flows.
This effect can be conveniently visualized by contracting the nodes in question into a single
one, and requiring that the flow is conserved at the contracted node. For example, as shown
in figure 5, the partitionY = {123216} of G6 is contracted into a diagram consisting of a
sequence of threeG2 ‘cactus leaves’ attached together at two common nodes. Generally,
the delta functionδ(Y ) contractsGn into a diagram consisting of cactus leavesGm,m < n,
attached together at common nodes. The planar nature ofY then ensures that the resulting
diagram is a cactustree. One next carries out they-summations one-by-one starting from
the nodes of the outermost leaves of the tree. The tree structure now ensures that this
always leads to a product of 2-point delta functions. In the example shown in figure 5, for
instance, this leads to

δ(x5, x6)δ(x4+ x6, x1+ x5)δ(x1+ x3, x2+ x4)δ(x2, x3) = δ(x5, x6)δ(x4, x1)δ(x2, x3) (48)

but this is precisely the factorδ(X) appearing inDXδ(X) on the LHS of (45), where
X = {122155} ↔ Y . It is readily verified that, generally for each planarX ↔ Y , to the
termDXδ(X) on the LHS of (45), they-summations of theY term on the RHS yields a
factorDYq

|Y |δ(X). Now, the indices{xi} in a givenδ(X) are arbitrary. It follows that the
coefficients of the two terms must be equal, and this leads to the identity

DX = Cn(q)q |Y |D∗Y planarX↔ Y (49)

an equation which generalizes (25) and (32).
(ii) 0X is non-planar. We now consider the remainingbn− cn terms in (45). Now, each

remaining term on the LHS is of the formDXδ(X), whereδ(X) is a product of 2-point
delta functionsδ(xj , xk). For the remaining terms on the RHS we again carry out they-
summations for eachY . However, due to the fact thatY is now non-planar, the process of
contraction as described in the above leads to diagrams in which cactus leaves form rings,
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or circuits. It follows that they-summations generate a product involving delta functions of
the typeδ(xi+xj , xk+x`), which cannot be reduced into products of 2-point delta functions
as in (48). In other words, the delta functionsδ(X) occurring on the LHS do not appear
on the RHS, and vice versa. Now, the the indices{xi} in a givenδ(X) are arbitrary. It
follows that, for the equality (45) to hold for all{xi}, each of these remaining coefficients
must vanish individually. Namely, we must have

DX = D∗Y = 0 non-planarX, Y. (50)

Finally introduce the partially ordered partition sums

Pn(x1, x2, . . . , xn) =
∑
X

AXδ(X)

py1y2...yn =
∑
Y

BY δ(Y )
(51)

whereAX = DX/Z, BX = Z∗Y /Z∗11...1. Combining (7), (16) and using (46), the identities
(49) and (50) now establish the conjecture of [5], which we now state.

Theorem.

AX = q−|X|BY for planarX↔ Y

= 0 otherwise. (52)

Explicitly, the coefficientsBY are given in terms ofpy1y2...yn by the Möbius inversion (41).
Thus, the second line in (52) leads to identities relating partial partition functionsZX. For
example, from the second line of (44) andA1212= D1212= 0, we obtain

Z1212− Z1214− Z1232+ Z1234= 0. (53)

This is then = 4 identity reported in [5]. Generally, one obtains an identityAX = 0 for
each non-planarX. Using these equations one can express all non-planarZX in terms of
planar ones, a fact reached in [5] through the use of high-temperature expansions.

One can also write down the transformation relatingZX andZ∗Y . For generaln and
planarX one finds by combining (40), (49) and (41),

ZX = Cn(q)
∑
X′�X

q |Y
′| ∑
Y ′′�Y ′

µ(Y ′′, Y ′)Z∗Y ′′ X′ ↔ Y ′. (54)

The transformation relatingPn(x1, . . . , xn) to py1...yn can be written down similarly with the
factor Cn(q) replaced byq−(n+1). More explicitly, define row vectors̃zn and z̃∗n whose
elements are thecn partial partition functions corresponding to planarX, we find

zn = qCn(q)Tn(q) · z∗n (55)

whereTn(q) is a cn × cn matrix satisfying the identity

[Tn(q)]2(X,X′) = qn−1δ(x1, x
′
2)δ(x2, x

′
3) . . . δ(xn, x

′
1). (56)

Note that the coefficientqn−1 on the RHS differs from that in (21). Expressions ofTn(q)
for n = 2, 3 have been given in (30) and (36). The expression forn = 4 can be deduced
from results reported in [5]. Forn = 5 there are 42 planarX and we define the row vector

z̃5 = (Z11111, (Z11115, Z11141, Z11311, Z12111, Z12222), (Z11144, Z11331, Z12211, Z11333, Z12221),

(Z11145, Z11341, Z12311, Z12333, Z12225), (Z11335, Z12241, Z11344, Z12331, Z12244),

(Z11315, Z12141, Z12311, Z12115, Z12242), (Z11343, Z12321, Z12144, Z12332, Z12215),

(Z12125, Z12142, Z12312, Z12313, Z12323), (Z11345, Z12341, Z12344, Z12335, Z12245),

(Z12145, Z12342, Z12315, Z12343, Z12325), Z12345). (57)
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Then after some algebra we deduce from (54) the explicit transformation

Z11111= {1+ q1(1, 1, 1, 1, 1)+ q1(1, 1, 1, 1, 1)+ q1q2(1, 1, 1, 1, 1)+ q1q2(1, 1, 1, 1, 1)

+q2
1(1, 1, 1, 1, 1)+ q2

1(1, 1, 1, 1, 1)+ q1s(1, 1, 1, 1, 1)

+q2
1q2(1, 1, 1, 1, 1)+ q1q2t}

Z11115= {1+ (−1, q1, q1, q1,−1)+ (−1, q1, q1,−1, q1)− q2(1,−q1,−q1, 1, 1)

−q2(1,−q1, 1,−q1, 1)− q1(1,−q1, 1, 1, 1)− q1(1,−q1, 1, 1, 1)

+s(1,−q1, 1, 1, 1)− q1q2(1, 1, 1, 1, 1)− q2t}
Z11144= {1+ (q1,−1, q1, q1,−1)− (1, 1,−q1, 1, 1)− q2(1, 1,−q1, 1, 1)

−q2(1, 1, 1, 1, 1)+ (−q2
1,−q1,−q1, q

2
1, 1)+ (1,−q1,−q1, 1, q2

1)

−(p, s, s, p, p)+ q2(−q1, 1, q1q2, 1,−q1)− q2u}
Z11145= {1− (1, 1,−q1,−q1, 1)− (1, 1,−q1, 1, 1)+ (2,−q2, q1q2,−q2, 2)

−(−2, q2, q2, q2, q2)− (q1, q1, q1, q1,−1)− (−1, q1, q1,−1, q1)

+(h,−s,−s, h, h)+ (2q1, q2,−q1q2, q2, 2q1)+ 2(t + q)}
Z11335= {1− (1,−q1, 1,−q1, 1)− (1, 1, 1, 1, 1)− q2(1, 1, 1, 1, 1)+ (2,−q2, 2,−q2, 2)

+(1, q2
1, 1,−q1,−q1)+ (−q1, 1,−q1, 1, 1)+ (h,−p, h, h, h)

−(q1q2, q2, q2, q1q2, 2)+ 2u}
Z11315= {1− (1, 1, 1,−q1, 1)− (1,−q1, 1, 1,−q1)− (−2, q2, q2, q2, q2)

+(−q2,−q2, 2, q1q2, 2)+ (1,−q1, 1,−q1, 1)+ (1,−q1, 1,−q1, 1)

+(e,−s, h,−s, e)+ (2q1, q2, 2q1, 2q1, q2)+ v}
Z11343= {1− (1, 1, 1,−q1, 1)− (−q1, 1, 1, 1, 1)− (q2,−2, q2, q2,−2)

−(−2,−2, q2, q2, q2)+ (1,−q1, 1,−q1, 1)+ (1, 1, 1, 1, 1)

+(e, h,−p, h, e)− (q1q2, 2,−q2,−q2, 2)+ v + 3q}
Z11345= {1− (1, 1, 1,−q1, 1)− (1, 1, 1, 1, 1)+ (2, 2,−q2,−q2, 2)+ (2, 2, 2,−q2, 2)

+(1,−q1, 1,−q1, 1)+ (1, 1,−q1, 1, 1)+ (−5, h, h, h,−5)

+(2q1,−2, q2, q2,−2)+ 14− 5q}
Z12145= {1− (1, 1, 1, 1, 1)− (1, 1,−q1, 1, 1)+ (2, 2,−q2, 2, 2)+ (2,−q2, 2, 2,−q2)

+(1, 1, 1, 1, 1)+ (1,−q1, 1, 1,−q1)− (q + 5, 5, 5, 5,−h)
−(2, 2,−q2, 2, 2)+ 14− 2q}

Z12345= {1− (1, 1, 1, 1, 1)− (1, 1, 1, 1, 1)+ (2, 2, 2, 2, 2)+ (2, 2, 2, 2, 2)

+(1, 1, 1, 1, 1)+ (1, 1, 1, 1, 1)− (5, 5, 5, 5, 5)− (2, 2, 2, 2, 2)+ 14} (58)

where qm = q − m, e = q − 5, h = 2q − 5, s = q2 − 5q + 5, p = q2 − 4q + 5,
t = q2 − 7q + 7, u = q2 − 5q + 7, v = q2 − 10q + 14. Here, one reads off
elements ofT5(q) from (58) directly. For example, the second row ofT5(q) has elements
{1, (−1, q1, q1, q1,−1), (−1, . . .), . . . ,−q2t}. Elements not shown are given by cyclic
permutations of the partition indices within each set of parentheses. For example, the
third row of T5(q) is {1, (−1,−1, q1, q1, q1), (q1, . . .), . . . ,−q2t}, where elements within
each set of parentheses are obtained by cyclically permuting those in the second row.
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6. The multicomponent Potts and chiral Potts models

The chiral Potts model can be generalized to more-than-one components. Anm-component
chiral Potts model [7, 8] is a

Q = N1N2 . . . Nm (59)

state spin model, whereN`, ` = 1, 2, . . . , m, are positive integers. The interaction matrix
U is aQ ×Q matrix in the form of a direct product ofm cyclic matrices, with elements
indexed byU(x1, . . . , xm|x ′1, . . . , x ′m), x`, x ′` = 1, 2, . . . , N`, ` = 1, . . . , m, satisfying the
cyclic property

U(x1, . . . , xm|x ′1, . . . , x ′m) = u(x1− x ′1, . . . , xm − x ′m). (60)

Them = N1 = N2 = 2 version is known as the Ashkin–Teller model [9].
It is convenient to introduce vectorsx = (x1, . . . , xm) andy = (y1, . . . , ym) and their

scalar product

x · y = x1y1/N1+ · · · + xmym/Nm x`, y` = 1, . . . , N`. (61)

Then the dual model has the Boltzmann factor

u∗(y) = 1√
Q

N1∑
x1=1

. . .

Nm∑
xm=1

e2π ix·yu(x) (62)

and the duality relation (7) now reads

Q−N/2Z[u(x)] = Q−N∗/2Z(D)[u∗(y)]. (63)

Here, again,
√
Qu∗(y) are the eigenvalues of the interaction matrixU.

Proceeding in a similar fashion as before, we arrive at the following duality relation in
place of (13),

Zx1x2...xn = Cn(Q)
∑

y1y2...yn

M(x1,x2, . . . ,xn|y1,y2, . . . ,yn)Z
∗
y1y2...yn

. (64)

Here,M is aQn ×Qn matrix with elements

M(x1,x2, . . . ,xn|y1,y2, . . . ,yn) = exp[2π i(xn1 · y1+ x12 · y2+ · · · + x(n−1)n · yn)] (65)

satisfying the reciprocal inversion relation

M2(x1,x2, . . . ,xn|x′1,x′2, . . . ,x′n) = Qn+1δ(x1,x
′
2)δ(x2,x

′
3) . . . δ(xn,x

′
1). (66)

Defining then-point correlation functions

Pn(x1,x2, . . . ,xn) = Zx1x2...xn/Z(u)

py1y2...yn = QZ∗y1y2...yn
/Z(D)(u∗)

(67)

then (64) becomes

Pn(x1,x2, . . . ,xn) = Q−(n+1)
∑

y1y2...yn

M(x1,x2, . . . ,xn|y1,y2, . . . ,yn)py1y2...yn . (68)

This is the most general correlation duality relation for them-component chiral Potts model.
An immediate consequence of (68) is, in analogy to (11) and (18), the following expression
for the n-point correlation

0n ≡ QnPn(x,x, . . . ,x)− 1= Q−1
∑

y1y2...yn

py1y2...yn − 1. (69)



Duality relation for correlation functions 2835

Them-component Potts model.The m-component chiral Potts model reduces to anm-
component (standard) Potts model when the interaction (60) assumes the form (5) for each
component, namely,

u(x1, . . . , xm) =
m∏
`=1

[1+ (eK` − 1)δN`(x`, 0)] x` = 1, 2, . . . , N` (70)

where

δN`(x, x
′) = 1 x = x ′ (modN`)

= 0 x 6= x ′ (modN`). (71)

Them = 2 version is known as the(N1, N2) model [10].
Now eachxi in (68) is anm-component vector. Let its components bexi` =

1, . . . , N`, i = 1, . . . , n; ` = 1, . . . , m, and letX` denote the partition of then integers
1, 2, . . . , n dictated by{xi`, i = 1, . . . , n}. Then, in analogy to (51), we write the partially
ordered mappings

Pn(x1,x2, . . . ,xn) =
∑
X`

AX1X2...XmδN1(X1)δN2(X2) . . . δNm(Xm)

py1y2...yn =
∑
Y`

BY1Y2...YmδN1(Y1)δN2(Y2) . . . δNm(Ym).
(72)

With these notations, we have the following corollary of our theorem.

Corollary. For them-component Potts model whose correlation functions are (72), we have

AX1X2...Xm =
m∏
`=1

N
−|X`|
` BY1Y2...Ym for planarX` ↔ Y`

= 0 otherwise. (73)

Here, explicitly, by using

ZX1X2...Xm/Z =
∑
X′`�X`

AX′1X
′
2...X

′
m

BY1Y2...Ym =
∑
Y ′`�Y`

pY ′1Y
′
2...Y

′
m

m∏
`=1

µ(Y ′`, Y`)
(74)

in analogy to (54) one can reduce the correlation duality relation (64) to

ZX1X2...Xm = Cn(Q)
∑
X′`�X`

∑
Y ′′` �Y ′`

Z∗Y ′′1 Y ′′2 ...Y ′′m

m∏
`=1

N
|Y ′`|
` µ(Y ′′` , Y

′
`) X′` ↔ Y ′`. (75)

This is the desired duality relation for them-component Potts model. Now there are(cn)m

partial partition functionsZ andZ∗. ConsideringZ andZ∗ as tensorsZm andZ∗m of rank
m, one can rewrite (75) more compactly as

Zm = QCn(Q)[Tn(N1)⊗ · · · ⊗ Tn(Nm)] · Z∗m (76)

where the tensor products are overm cn × cn matricesTn(q) defined in (55). The last
expression generalizes them = 2 results for the(N1, N2) model reported in [11].
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7. Summary

We have considered the chiral Potts model and obtained the duality relation for its correlation
functions of n sites on the boundary of a planar lattice. The result is given by (13)
and (17). By specializing this result to the standard Potts model, we establish a recent
conjecture of [5] on the correlation duality which we now state in (52) as a theorem.
The explicit duality relation relating the partial partition functions is given in (54), with
the n = 2, 3, 5 expressions explicitly worked out. The formulation is next extended to the
multicomponent chiral Potts model, leading to the correlation duality relations (64) and (68).
Again, specializing the results to them-component Potts model, we obtain the corollary (73)
and the correlation duality relations (75) and (76).
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